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Project #3: Multi-degree-of-freedom (MDoF) systems – SOLUTION 
 
PART 1 – Modal analysis 
 

Numerical modelling approximations: The 2-story MOLA building model consists of two 
moment resisting frames (MRFs) acting in parallel. The corresponding idealization of the 
multi-degree-of-freedom (MDOF) system as a 2D structure comprised of beam column 
elements is shown in Figure 1. Specifically, Figure 1a shows the node and element numbering 
for a single MRF. In the general case, each of the six nodes has three DOFs – two translations 
in the plane of the frame as well as one rotation. This yields a total of eighteen DOFs for the 
system. 

Since the nodes 1 and 2 are fully fixed, their displacements are known (they equal zero) 
which leaves twelve unknown DOFs. A further simplification is possible by recognizing that 
the slabs located at each of the stories are rigid in the plane. As such, they provide a kinematic 
constraint for the nodes of the same stories. In other words, they link the node 3 with node 4 
and node 5 with node 6 so that their lateral (horizontal) displacements are equal. This leaves 
ten unknown DOFs. 

Finally, if we assume that the axial stiffness of the short springs that are acting as 
columns is much higher compared to their bending stiffness, we can remove the vertical DOFs 
from the list of the unknowns. This is because assuming columns to have an infinite axial 
stiffness effectively means that all vertical displacements are zero. This can be a good 
approximation in this case, particularly since the earthquake ground motion is only acting in 
the horizontal direction. As such, there are six DOFs used for static analysis (Figure 1b).  

 
Figure 1. 2-story MRF structure: a) sketch of the model with node and element numbers 
written inside circles and rectangles, respectively; b) degrees of freedom (DOFs) of the MDOF 
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system - there are six DOFs for static analysis and the two DOFs used in dynamic analysis are 
highlighted in red. 
 

To identify the dynamic DOFs, note that most of the mass is located at each of the 
floors. As a result, the mass can be lumped, i.e., assumed to exist only at each of the floors. 
Given that the earthquake ground motion acts at the supports in the horizontal direction, there 
are two DOFs used for the dynamic analysis. Specifically, the dynamic DOFs are lateral 
displacements of the first and second floor as indicated with u1 and u2 in red text in Figure 1b, 
respectively. In summary, for structural analysis the matrices will be 6x6 while for the dynamic 
response computations the matrices will have the size 2x2. 
 
Assembling the stiffness and mass matrices: To assemble the global stiffness matrix of the 
MRF system, the direct stiffness method will be used. In this approach, the contributions of 
different beam-column elements are summed up to yield stiffness coefficients for the global 
matrix. The stiffness coefficients, kij, for the beam-column element are shown in Figure 2. As 
a reminder, the meaning of the stiffness coefficient kij is the “force” in the direction of DOF ‘i’ 
given a unit “displacement” in the direction of DOF ‘j’. The “force” in this case refers to either 
a force or a moment, while the “displacement” is either a translation or rotation. 

 
Figure 2. Stiffness coefficients, kij, for a linearly elastic beam-column element: a) coefficients 
for joint rotation; b) coefficients for joint translation. Figure adapted from [1]. 
 

The above definition of the stiffness coefficient can be leveraged to directly assemble 
the stiffness matrix for the system. In particular, to obtain the global stiffness matrix coefficient 
Kij we apply a unit “displacement” in the direction of the global degree-of-freedom ‘i’ while 
keeping all other DOFs fixed, i.e., with zero displacement. Figure 3 demonstrates this approach 
for DOFs 2 and 5, the remaining coefficients can be obtained in an analogous manner.  

 
Figure 3. Stiffness coefficients, Kij, for the MRF system: a) beam-column element 
contributions for coefficients Ki2; b) beam-column element contributions for coefficients Ki5. 
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The 6x6 global stiffness matrix obtained using the direct stiffness approach for the 2-
story MRF is given in Figure 4. The stiffness coefficients from stiffness contributions shown 
in Figures 3a and 3b correspond to the second and fifth column in the global stiffness matrix, 
respectively. The factor of two that is multiplying the global matrix accounts for the fact that 
there are two identical MRF systems acting in parallel.  

 
Figure 4. The global stiffness matrix of the 2-story MRF system. 

 
Identified in Figure 4 are also the submatrices Ktt, Kto, and Koo that can be used to 

perform static condensation using the following equation (e.g., chapter 9 in [1]): 
 

𝑲" = 𝑲𝒕𝒕 −	𝑲𝒐𝒕
# 𝑲𝒐𝒐

$%𝑲𝒐𝒕	, 
 
which yields the condensed stiffness matrix of the entire 2-story structure (units used are 
Newton for the force and meter for length): 
 

𝑲" = '172.969 −69.726
−69.726 46.173 0	. 

 
Given that a lumped mass approximation is used herein, assembling the mass matrices 

is straightforward. Specifically, the matrices are diagonal with masses assigned to dynamic 
DOFs only, as shown in Figure 5. The masses m1 and m2 represent the masses lumped to the 
first and second floors respectively:  

m1 = 4mball + 2mspring, short + 2mspring, long + mslab + 8mstiffener = 0.142kg,  
m2 = 4mball + 2mspring, short + 2mspring, long + mslab + 4mstiffener = 0.133kg. 

 

Ktt Kto

Kot Koo
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Figure 5. The global mass matrix of the 2-story MRF system: a) the full mass matrix; b) 

condensed mass matrix for the dynamic DOFs. 
 
Computing natural periods and mode shapes: Once the system-level stiffness and mass 
matrices have been assembled, eigenvalue analysis can be performed to determine the natural 
periods and mode shapes for the 2-story structure. In particular, the following equation 
represents the eigenvalue problem (chapter 10 in [1]): 
 

𝒌𝜙& = 𝒎𝜙&𝜔&' ,      (1) 
 
where wn2 is the nth eigenvalue, while fn is the nth eigenvector. To solve the eigenvalue problem 
using, e.g., python or Matlab packages, the equation (1) needs to be converted to the standard 
eigenvalue problem of the form: 
 

𝑨𝑣 = 𝜆𝑣 ,      (2) 
 
where A is the matrix for which the eigenvalues and eigenvectors are being computed, v is the 
eigenvector, and l is the eigenvalue. The reformatting can be achieved by pre-multiplying the 
equation (1) by the inverse of the mass matrix. This process yields the following natural periods 
and mode shapes (mode shapes scaled to unit value at DOF 2 are visualized in Figure 6): 
 

𝑇% = 0.588s, 𝑇' = 0.165s,     (4) 
 

𝜙% = :0.406320.91373; , 𝜙' = : 0.90359−0.42839;,     (5) 
 

  
Figure 6. Visualization of the mode shapes for the 2-story MDOF system. 

 
 

a) b)
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PART 2 – Damping: 
 

Estimation of the damping ratio: The results of experimental measurements of the free 
vibration can be used to estimate the damping characteristics of the building. Shown in Figure 
7 is the measured response of the free vibration for the horizontal displacements of the first and 
second floors (i.e., displacements for DOFs u1 and u2). Indicated with red triangles and x-
shaped markers are the peaks of the response. These peaks can be used to estimate the damping 
from the logarithmic decrement (chapter 2 in [1]): 
 

𝛿 = (1/𝑗)	ln	(𝑢(/𝑢()*) 	= 2𝜋𝜁,      (6) 
 
where ui and ui+j represent the ith and i+jth peak of the response, d is the logarithmic decrement, 
j is the number of cycles over which the motion decreases, and z is the damping ratio being 
estimated. By applying the equation (6) to the measured displacements of the first and the 
second floors and taking the mean value, the damping ratio z  ≈ 0.07 is obtained.  
 

 
Figure 7. Damping estimation from the measured free vibration response. 

 
Assemble the Rayleigh damping matrix: The damping matrix used herein will be the stiffness 
and mass proportional damping matrix, i.e., the Rayleigh damping matrix. The key related 
modelling consideration is to assign the desired damping ratio z at two circular frequencies w1 
and w2 from which the mass matrix factor, a0, and stiffness matrix factor, a1, can be computed 
as follows:  

𝑎+ = 𝜁	(',!,"
,!),"

)	, 𝑎% =
'-

,!),"
 .      (7) 

 
Once the factors a0 and a1 are computed, the damping matrix for the system can be obtained 
as: 

𝑪 = 𝑎+𝑴" + 𝑎%𝑲"  
 
Given that the 2-story model is responding in the first mode for the free vibration (see 

video ‘2dof_mrf_free_vib_video.avi’), the estimated damping ratio corresponds to the 
damping in the first mode. Herein we will assume that the damping ratio in the second mode 
takes the same value. In other words, when computing the coefficients a0 and a1 we will use 
circular frequencies based on natural periods T1 and T2 of the two-story frame. This yields 
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values of a0 = 1.205067 and a1 = 0.002961. However, note that the selection of circular 
frequencies w1 and w2 is a modelling choice and hence need not be based on natural periods of 
the structure. 
 
Checking the eigenvalue analysis results: The free vibration response measurement offers an 
opportunity to check some of the modal analysis values computed in Part I. As mentioned 
previously, given that the structure is vibrating in the first mode the fundamental period can be 
estimated from the zero-crossings, as shown in Figure 8. The estimate of the fundamental 
period T* = 0.578s was obtained as the average value between the zero-crossings indicated 
with red star-shaped markers in the figure. This value is within 2% difference of the 
fundamental period T1 = 0.588s computed using the eigenvalue analysis. 
 

 
Figure 8. Estimation of the period of vibration from the measured free vibration response. 

 
Given the value of the period T* it is possible to compute the corresponding modal stiffness 
K1* using the modal mass M1 as follows: 
 

𝑀% =	𝜙%#𝑴"𝜙% = :0.406320.91373;
#
𝑴" :0.406320.91373; = 0.13455, (8) 
 

𝐾%∗ = O'/
#∗
P
'
𝑀% = 15.8826. (9) 

 
The modal stiffness K1 can also be computed in the analogous way using the condensed 
stiffness matrix 𝑲"  which yields K1 = 15.3325. Note that in this computation the same 
eigenvectors are used as when computing K1*, but the computation is based on the condensed 
stiffness matrix rather than on the modal mass. The difference between K1 and K1* is around 
3.5% which is an independent check giving some support that the stiffness matrix and 
eigenvalue analyses computed in Part I are correct. 
 
PART 3 – Response to seismic excitation: 
 

Response spectrum of the El Centro ground motion: The pseudo-acceleration, Sa(T), response 
spectrum for the El Centro earthquake ground motion is shown in Figure 9. The graph is plotted 
in the log-log scale where the two structural periods of 0.588s and 0.165s are indicated with 
vertical lines. The corresponding values of the spectral accelerations are also shown on the 

T*
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figure with red star-shaped markers. Note that the pseudo-acceleration is about 50% smaller at 
the fundamental mode compared to the second modal period.  

 
Figure 9. Pseudo-acceleration, Sa(T), response spectrum for the El Centro earthquake ground 

motion. 
 
Response history analysis (RHA) using modal superposition: The fundamental assumption of 
the modal superposition is that the structure is responding in a linear elastic manner. If this is 
the case, then the equations of motion of an MDOF with classical damping can be uncoupled 
and solved independently for a series of SDOF systems. The total response is obtained by 
combining the SDOF responses using the modal participation factors: 
 

𝒖(𝑡) = ∑ 𝜙&Γ&'
&0% D&(𝑡),   (10) 

 
where 𝜙& are the mode shape vectors, Γ& are the modal participation factors, and D&(𝑡) 
represents the response history of an SDOF with the period Tn and damping ratio zn to the input 
ground motion.  

Note that in the equation (10), the only quantity that is a function of time is D&(𝑡), i.e., 
the time response of the SDOF system which can be obtained using a numerical integration 
scheme such as the Newmark’s method. The 𝜙& is a vector of constants (obtained in Part I), 
while the modal participation factors Γ& can be obtained using the following equations: 
 

Γ& = L&/M&,  𝐿& = 𝜙&#𝑴" 	𝜄,  𝑀& = 𝜙&#𝑴"𝜙&, (11) 
 
where the 𝜄 = [1 1]# is the influence vector for the translational ground motion. Using the 
equation (11), the following modal participation factors are obtained for the 2-story MRF 
system: Γ% = 1.3324, Γ' = 0.5076. The comparison between displacements obtained using 
RHA and the measurements is shown in Figure 10. While there are some minor differences, 
the computed responses closely follow the measurements.  
 

T1 = 0.588sT2 = 0.165s

Sa(T1) = 0.242g

Sa(T2) = 0.502g
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Figure 10. Comparison of the measured and computed displacements: a) first story; b) 

second story. 
 
A note on using the recorded earthquake ground motion as an input for the small-scale shake 
table: The El Centro ground motion used in this project is shown in Figure 11. Specifically, 
the figure shows the ground motion as recorded during the earthquake with the ground 
accelerations and ground displacements shown in Figure 11a and 11b, respectively. It can be 
seen that the PGA (peak ground acceleration) equals about 0.5g while the maximum ground 
displacement is on the order of 50cm.  

 
Figure 11. El Centro ground motion record: a) ground acceleration; b) ground displacement. 
 
Since the stroke of the shake table is +/- 7.5cm, this small-scale table cannot directly reproduce 
the ground motion as it was recorded. Hence, the record needs to be scaled in a way that 
preserves the accelerations but so that the displacements do not exceed the capabilities of the 
shake table. Shown in Figure 12 is the shake table response that corresponds to the El Centro 
ground motion after scaling.  

 
Figure 12. Shake table response to the input motion: a) acceleration; b) displacement. 

a) b)
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Note that the shapes of acceleration and displacement time series in Figure 12 look 
similar to the corresponding data in Figure 11. Furthermore, the amplitudes of the two 
acceleration time series are similar. In contrast, the displacements after scaling are much 
smaller compared to the recorded motion. In particular, the maximum displacement of the 
shake table response is around 2cm – which can be accommodated by the stroke of the table – 
as compared to the 50cm of the recorded motion. Also note that, as the result of this scaling 
process, the length of the time series changed from about 40s to around 10s. This is necessary 
so as to keep the accelerations between the motions in close agreement while reducing the 
displacements. Some additional information about this scaling process is available from the 
shake table manufacturer: https://www.quanser.com/blog/scaling-earthquakes-quanser-way/. 

Finally, some minor differences in the acceleration time series between Figures 11 and 
12 are due to the fact that Figure 12 shows the measured response of the shake table and not 
the scaled ground motion which was provided as an input to the controller that shakes the table. 
In other words, the motion of the shake table is not exactly the same as the signal provided as 
the input. At the same time, we are interested in the ground motion that is shaking the model 
and are hence using the measured acceleration of the shake table as the basis of the analyses in 
this project. 
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