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Project #3: Multi-degree-of-freedom (MDoF) systems — SOLUTION

PART 1 — Modal analysis

Numerical modelling approximations: The 2-story MOLA building model consists of two
moment resisting frames (MRFs) acting in parallel. The corresponding idealization of the
multi-degree-of-freedom (MDOF) system as a 2D structure comprised of beam column
elements is shown in Figure 1. Specifically, Figure 1a shows the node and element numbering
for a single MRF. In the general case, each of the six nodes has three DOFs — two translations
in the plane of the frame as well as one rotation. This yields a total of eighteen DOFs for the
system.

Since the nodes 1 and 2 are fully fixed, their displacements are known (they equal zero)
which leaves twelve unknown DOFs. A further simplification is possible by recognizing that
the slabs located at each of the stories are rigid in the plane. As such, they provide a kinematic
constraint for the nodes of the same stories. In other words, they link the node 3 with node 4
and node 5 with node 6 so that their lateral (horizontal) displacements are equal. This leaves
ten unknown DOFs.

Finally, if we assume that the axial stiffness of the short springs that are acting as
columns is much higher compared to their bending stiffness, we can remove the vertical DOFs
from the list of the unknowns. This is because assuming columns to have an infinite axial
stiffness effectively means that all vertical displacements are zero. This can be a good
approximation in this case, particularly since the earthquake ground motion is only acting in
the horizontal direction. As such, there are six DOFs used for static analysis (Figure 1b).
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Figure 1. 2-story MRF structure: a) sketch of the model with node and element numbers
written inside circles and rectangles, respectively; b) degrees of freedom (DOFs) of the MDOF
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system - there are six DOFs for static analysis and the two DOFs used in dynamic analysis are
highlighted in red.

To identify the dynamic DOFs, note that most of the mass is located at each of the
floors. As a result, the mass can be lumped, i.e., assumed to exist only at each of the floors.
Given that the earthquake ground motion acts at the supports in the horizontal direction, there
are two DOFs used for the dynamic analysis. Specifically, the dynamic DOFs are lateral
displacements of the first and second floor as indicated with #; and u; in red text in Figure 1b,
respectively. In summary, for structural analysis the matrices will be 6x6 while for the dynamic
response computations the matrices will have the size 2x2.

Assembling the stiffness and mass matrices: To assemble the global stiffness matrix of the
MREF system, the direct stiffness method will be used. In this approach, the contributions of
different beam-column elements are summed up to yield stiffness coefficients for the global
matrix. The stiffness coefficients, kj;, for the beam-column element are shown in Figure 2. As
a reminder, the meaning of the stiffness coefficient k;; is the “force” in the direction of DOF ‘i’
given a unit “displacement” in the direction of DOF ‘j’. The “force” in this case refers to either
a force or a moment, while the “displacement” is either a translation or rotation.
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Figure 2. Stiffness coefficients, &;;, for a linearly elastic beam-column element: a) coefficients
for joint rotation; b) coefficients for joint translation. Figure adapted from [1].

The above definition of the stiffness coefficient can be leveraged to directly assemble
the stiffness matrix for the system. In particular, to obtain the global stiffness matrix coefficient
Kij we apply a unit “displacement” in the direction of the global degree-of-freedom %’ while
keeping all other DOFs fixed, i.e., with zero displacement. Figure 3 demonstrates this approach
for DOFs 2 and 5, the remaining coefficients can be obtained in an analogous manner.
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Figure 3. Stiffness coefficients, K;, for the MRF system: a) beam-column element
contributions for coefficients K;2; b) beam-column element contributions for coefficients Kjs.
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The 6x6 global stiffness matrix obtained using the direct stiffness approach for the 2-
story MRF is given in Figure 4. The stiffness coefficients from stiffness contributions shown
in Figures 3a and 3b correspond to the second and fifth column in the global stiffness matrix,
respectively. The factor of two that is multiplying the global matrix accounts for the fact that
there are two identical MRF systems acting in parallel.
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Figure 4. The global stiffness matrix of the 2-story MRF system.

Identified in Figure 4 are also the submatrices Ky, K, and Koo that can be used to
perform static condensation using the following equation (e.g., chapter 9 in [1]):

K= Ky — Kf;tK;éKot,

which yields the condensed stiffness matrix of the entire 2-story structure (units used are
Newton for the force and meter for length):

R = 172969 —69.726
—69.726  46.173 1°
Given that a lumped mass approximation is used herein, assembling the mass matrices

is straightforward. Specifically, the matrices are diagonal with masses assigned to dynamic
DOFs only, as shown in Figure 5. The masses m; and m. represent the masses lumped to the
first and second floors respectively:

mi = 4mpay + 2mspring, short T 2mspring, long T Msiap + 8msnﬁ‘ener =0. 142kg,

mo = 4mpay + 2mspring, short T 2mspring, long T Msiap + 4mstiﬁ‘ener = 0133kg
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Figure 5. The global mass matrix of the 2-story MRF system: a) the full mass matrix; b)
condensed mass matrix for the dynamic DOFs.

Computing natural periods and mode shapes: Once the system-level stiffness and mass
matrices have been assembled, eigenvalue analysis can be performed to determine the natural
periods and mode shapes for the 2-story structure. In particular, the following equation
represents the eigenvalue problem (chapter 10 in [1]):

kpn = mppwz, (1)

where w,’ is the n'" eigenvalue, while ¢, is the n'" eigenvector. To solve the eigenvalue problem
using, e.g., python or Matlab packages, the equation (1) needs to be converted to the standard
eigenvalue problem of the form:

Av=1v, (2)

where A is the matrix for which the eigenvalues and eigenvectors are being computed, v is the
eigenvector, and A is the eigenvalue. The reformatting can be achieved by pre-multiplying the
equation (1) by the inverse of the mass matrix. This process yields the following natural periods
and mode shapes (mode shapes scaled to unit value at DOF 2 are visualized in Figure 6):

T, = 0.588s, T, = 0.165s, (4)
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Figure 6. Visualization of the mode shapes for the 2-story MDOF system.
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PART 2 — Damping:

Estimation of the damping ratio: The results of experimental measurements of the free
vibration can be used to estimate the damping characteristics of the building. Shown in Figure
7 is the measured response of the free vibration for the horizontal displacements of the first and
second floors (i.e., displacements for DOFs u; and u>). Indicated with red triangles and x-
shaped markers are the peaks of the response. These peaks can be used to estimate the damping
from the logarithmic decrement (chapter 2 in [1]):

6 = (1/)) In w'/u*)) =2ng,  (6)

where ' and u'" represent the i and i+j” peak of the response, Jis the logarithmic decrement,

Jj is the number of cycles over which the motion decreases, and ¢ is the damping ratio being
estimated. By applying the equation (6) to the measured displacements of the first and the
second floors and taking the mean value, the damping ratio £ = 0.07 is obtained.
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Figure 7. Damping estimation from the measured free vibration response.

Assemble the Rayleigh damping matrix: The damping matrix used herein will be the stiffness
and mass proportional damping matrix, i.e., the Rayleigh damping matrix. The key related
modelling consideration is to assign the desired damping ratio ¢ at two circular frequencies @;

and w; from which the mass matrix factor, ay, and stiffness matrix factor, a;, can be computed
as follows:

2w1wo

) , a4 = X . (7)

wi1twy wi1twr

ap =G (

Once the factors ag and a; are computed, the damping matrix for the system can be obtained
as:

C = a0M+a1R

Given that the 2-story model is responding in the first mode for the free vibration (see
video ‘2dof_mrf_free_vib_video.avi’), the estimated damping ratio corresponds to the
damping in the first mode. Herein we will assume that the damping ratio in the second mode
takes the same value. In other words, when computing the coefficients ap and a; we will use
circular frequencies based on natural periods 77 and 7> of the two-story frame. This yields
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values of ap = 1.205067 and a; = 0.002961. However, note that the selection of circular

frequencies w; and @: is a modelling choice and hence need not be based on natural periods of
the structure.

Checking the eigenvalue analysis results: The free vibration response measurement offers an
opportunity to check some of the modal analysis values computed in Part I. As mentioned
previously, given that the structure is vibrating in the first mode the fundamental period can be
estimated from the zero-crossings, as shown in Figure 8. The estimate of the fundamental
period 7* = 0.578s was obtained as the average value between the zero-crossings indicated
with red star-shaped markers in the figure. This value is within 2% difference of the
fundamental period 7; = 0.588s computed using the eigenvalue analysis.
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Figure 8. Estimation of the period of vibration from the measured free vibration response.

Given the value of the period 7* it is possible to compute the corresponding modal stiffness
K * using the modal mass M; as follows:

0.40632}T P {0.40632

_ T ax _ _
My = ¢ My = {0.91373 0.91373} = 013455, (8)

K, = (ZT—”)2 M, = 15.8826. (9)

The modal stiffness K; can also be computed in the analogous way using the condensed
stiffness matrix K which yields K; = 15.3325. Note that in this computation the same
eigenvectors are used as when computing K;*, but the computation is based on the condensed
stiffness matrix rather than on the modal mass. The difference between K; and K;* is around
3.5% which is an independent check giving some support that the stiffness matrix and
eigenvalue analyses computed in Part I are correct.

PART 3 — Response to seismic excitation:

Response spectrum of the El Centro ground motion: The pseudo-acceleration, S.(7), response
spectrum for the El Centro earthquake ground motion is shown in Figure 9. The graph is plotted
in the log-log scale where the two structural periods of 0.588s and 0.165s are indicated with
vertical lines. The corresponding values of the spectral accelerations are also shown on the
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figure with red star-shaped markers. Note that the pseudo-acceleration is about 50% smaller at
the fundamental mode compared to the second modal period.
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Figure 9. Pseudo-acceleration, S.(7), response spectrum for the El Centro earthquake ground
motion.

Response history analysis (RHA) using modal superposition: The fundamental assumption of
the modal superposition is that the structure is responding in a linear elastic manner. If this is
the case, then the equations of motion of an MDOF with classical damping can be uncoupled
and solved independently for a series of SDOF systems. The total response is obtained by
combining the SDOF responses using the modal participation factors:

u(t) = 2121=1 dn 0 Dy (), (10)

where ¢, are the mode shape vectors, [}, are the modal participation factors, and D,,(t)
represents the response history of an SDOF with the period 7, and damping ratio &, to the input
ground motion.

Note that in the equation (10), the only quantity that is a function of time is D,,(t), i.e.,
the time response of the SDOF system which can be obtained using a numerical integration
scheme such as the Newmark’s method. The ¢,, is a vector of constants (obtained in Part I),
while the modal participation factors I, can be obtained using the following equations:

o =Lp/Mp, Ly =¢iM 1, M, = piM¢y, (11)

where the t = [1  1]7 is the influence vector for the translational ground motion. Using the
equation (11), the following modal participation factors are obtained for the 2-story MRF
system: I} = 1.3324,I, = 0.5076. The comparison between displacements obtained using
RHA and the measurements is shown in Figure 10. While there are some minor differences,
the computed responses closely follow the measurements.
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Figure 10. Comparison of the measured and computed displacements: a) first story; b)
second story.

A note on using the recorded earthquake ground motion as an input for the small-scale shake
table: The El Centro ground motion used in this project is shown in Figure 11. Specifically,
the figure shows the ground motion as recorded during the earthquake with the ground
accelerations and ground displacements shown in Figure 11a and 11b, respectively. It can be
seen that the PGA (peak ground acceleration) equals about 0.5g while the maximum ground

displacement is on the order of 50cm.
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Figure 11. El Centro ground motion record: a) ground acceleration; b) ground displacement.

Since the stroke of the shake table is +/- 7.5cm, this small-scale table cannot directly reproduce
the ground motion as it was recorded. Hence, the record needs to be scaled in a way that
preserves the accelerations but so that the displacements do not exceed the capabilities of the
shake table. Shown in Figure 12 is the shake table response that corresponds to the El Centro

ground motion after scaling.
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Figure 12. Shake table response to the input motion: a) acceleration; b) displacement.
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Note that the shapes of acceleration and displacement time series in Figure 12 look
similar to the corresponding data in Figure 11. Furthermore, the amplitudes of the two
acceleration time series are similar. In contrast, the displacements after scaling are much
smaller compared to the recorded motion. In particular, the maximum displacement of the
shake table response is around 2cm — which can be accommodated by the stroke of the table —
as compared to the 50cm of the recorded motion. Also note that, as the result of this scaling
process, the length of the time series changed from about 40s to around 10s. This is necessary
so as to keep the accelerations between the motions in close agreement while reducing the
displacements. Some additional information about this scaling process is available from the
shake table manufacturer: https://www.quanser.com/blog/scaling-earthquakes-quanser-way/.

Finally, some minor differences in the acceleration time series between Figures 11 and
12 are due to the fact that Figure 12 shows the measured response of the shake table and not
the scaled ground motion which was provided as an input to the controller that shakes the table.
In other words, the motion of the shake table is not exactly the same as the signal provided as
the input. At the same time, we are interested in the ground motion that is shaking the model
and are hence using the measured acceleration of the shake table as the basis of the analyses in
this project.
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